5., N. F. Filippovskii, A. P. Baskakov, and V. G. Tuponogov, "Conditions for uniform fluidiza-
tion in a unit with a bubble-cap gas distributor,” Inzh.-Fiz. Zh., 46, No. 1, 118 (1984}.

CALCULATING THE GAS CONCENTRATION IN APPARATUS EQUIPPED
WITH AGITATORS

¥. M. Barabash, L. N. Braginskii, 7 UDC 66.015.23
and G. V. Gorbacheva )

A method is proposed for calculating the mean gas concentration and its distribu-
“tion along the height of an apparatus equipped with an agitator. An equation is
derived theoretically for calculating the effective velocity of gas held on the
surface of a gas—liquid layer.

one of the basie characteristies of a gas—liquid layer in apparatus equipped with agita-
tors that influence the extent of the phase contact surface and mass-transfer intensity is
its gas concentration.

According to the experimental results, the mean gas concentraticn increases as specific
power and effective gas velocity increase (1-8]. A comparison of several empirical depen-
dences showed [91 that their application led to divergent results which largely limits the
possible use of the available ecorvelations. This calls for urgently deriving generalized
methods of calculating the gas concentration.

Apparatus equipped with agitators for mixing gas—liquid systems are also equipped with
baffle plates and operate under turbulent conditions. Taking into consideraticn the results
of studying the suspension mixing processes in such apparatus [10] and gas~liquid systems in
bubblers {11],.a single-parameter diffusion model could be used for describing the vertical
gas bubble transport. This assumes the absance of a gas-phase concentration gradient along
the radius of the apparatus and the presence of uneven gas concentration only in the axial

direction:

dg d¢ :
Uh—dTl—Dt-aF-O- . " (1)

For low gas concentrations, the buoyancy of bubbles ignoring restraints is [12]

y

vy=T20/[8pgn (p—P )} T 1:8dppl1—P /P): (2)
and the bubble diameter in the main section of the apparatus is {1]

g, =i d5(a/p)* (e "'g e +0.0009. | (3)

The mean coefficient of eddy diffusion D¢ in an apparatus equipped with baffle plates is
determined using the equation of [9]

Dy=0,435ndaD (———:‘; °) , . < (&)
: a’y
where y = 4H/R+1; Rq = D/dg; R = D/2.

- For the given conditions

do_ .. {5)
- Lb(F—DtE;ﬂ w
qg=q¢ g at h=H g-lig (6)

——

| Leningrad Institute of Chemical Engineering Research and Design. Translated from
Teoreticheskie Osnovy Khimicheskoi Tekhnqlogii, Vel. 21, No. 5, pp. 654-660, September-
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Fig. 1. Gas concentration distribution along the radius of the_apparatus (D = 0.5m, d; =
0.15m, 4 = 8.4, H=0.5m, Gg =5.7 m*/h, and n = 10 sec™!); h = 1.0 {1) and 0.5 (2).

Fig. 2. Dependence of gas concentration gradient in the near-surface zone on the mean energy
dissipation: a and b) open turbine-type agitator: D=0.5m{a) and 0.24 (b); and c) agitator
with three blades, D = 0.24 m.

Fig. 3. Comparison of the calculated and experimental values of near-surface gas concentra-
tion; a-c) open turbine-type agitator: a) D = 0.5 m and d; = 0.15 m, b) 0.24 and 0.1, and

¢) 0.24 and 0.125; and d) D ® 0.24 m and d, = 0.08 m, rotary agitator; e) D=0.24dmand dg =
0.125 m, agitator with two blades; and £)D = 0.24 m and d, = 0.125 m, agitator with three

blades.

a solution to Egq. (1) will have the form

@(h)ﬂ(%* :;)exp( Ub(h;fs'nq) )+%- (7)

By integrating (7), we derive an equation for the mean gas concentration in the apparatus:

'hv‘:'(tr-g———%)( 1_exp(_ vbg.:‘liq)) vf;q_lz; iu; . -

It may be seen from (7) and (8) that the surface gas concentration ¢4 determined by the
gas bubble transport pattern close to the liquid surface, together with the structural features
of the apparatus and the agitater, phase properties, and alse the gas flow through the bubbler,
exerts much influence on the distribution of the dispersed phase in the apparatus and the mean
concentration.

Transport in the near-surface zone of the gas—liquid layer should satisfy the gas balance

D™ do

— = w' +ws’. (9)
Hq-119dh ' 5., :

LN 5

The local coefficient of eddy diffusion Dt1°°, according to [13], could be deternmined
from the local energy dissipation in the near-surface zone auloc:

Di.o.g(hloc ,'.'.(“R)"s_ (10)

The value £,1°C is determined as the sum of the dissipation of energies introduced by the
agitator (€,1°¢), and by the gas when feeding it through the bubbler (e,10€)_. Considering
that (£,19¢}, ~ 10Z of the mean dissipation of energy g3V [14] introduced inte an apparatus
equipped witﬂ an agitator and the energy introduced by the gas is dispersed practically unl-
formly throughout the apparatus, €,1°¢ could be expressed as
edoS=0.1e5¥ g, (11}
The intensity of gas flow intc the apparatus from the surface is characterized by the

effective gas velocity w'g. The phenomenon of gas holdup on the liquid surface was studied
in [7, 15-18]. It was shown [15] that gas holdup occurs only at an agitator rps exceeding
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the gas concentration in an apparatus equipped
with an agitator.

was derived for open turbine-type agitators at 0.1 < [(H— hy)/D)} £(0.25%1.754d,/D). The
dependence of n* on the distance h; between the agitator and the liquid surface has been
derived in [16). From the test results in a water—air system in apparatus of volume & to 100
m® with one or more rows of turbine-type agitators, the following equation was derived (16]

Fr (d,/ha) =0.36 (13)

where Fr = (n*)2d;/g is the Froude number.

The experimental dependences for calculating the gas holdup on the surface including
those derived in [17 and 1B) are qualitative while some quantitative evaluations led to con-
tradictory results.

For a more accurate evaluation of the faetors influencing the gas withdrawal from the
surface, the mechanism of this phenomenon is analyzed. According to observations, small
turbulent eddy formations, cavities, arise periodically on the surface as a result of its
deformation and are whipped up causing increased gas concentration in the liquid layer.

At fairly small sizes of these cavitiles, i.e., under conditions when the effect of gravi-

tational forces is insignificant, the magnitude of least surface deformations A is determined

from the equilibrium conditions of capillary and pulsating pressures:
,/ .

/

he?ce-

PVsr/ 2207, : (14)
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Lm0/ {pvea). (15)

Having determined VE.A using the “two-thirds law" of Kolmogorov~Obukhov [19 and 201]:

o= (e3%7.)° (16)

we obtain

2.=2.3(a/p) (899", (17)

Assuming further that the frequeney of surface deformations at a given point is equal to the
frequency of velocity pulsations of magnitude A:

Non=Ds allm (805} P15, (18)
for a unit surface with allowance for the local gas concentration ¢4, we have

., =\u(i-q:.)/('u )=03‘7(219c A TN (19}

Not 2ll the pulsations of magnitude A lead to the heldup of bubbles formed during the
whipglng up of the cavities but only those whose velocity exceeds the bucyancy of the bubbles
The proportion of such pulsations in the spectrum of pulsating velocities of magnitude
A assuming their normal distr:bution pattern [21} could be determined in the form

P=1*—2®(U bub fto.}, (20)

vhera "!b(vbb“bfvn a) is the probability that the pulsation rate v, ; does not exceed the
buoyancy of the bubbles formed on the surface in a normal distribution pattern [22].

From (19) and (20), we derive an equation for the frequency of bubble hold up from
the surface

R (1-¢,)[1-2®(%?:-b ] (21)

From this, assuming the volume of the bubble holdup as roughly equal to the volume of the
cavity, we obtain

w'=-o.as(-i;-)° oy "(1—:;)[1—9@( m)] (22)

From (9), with allowance for (22), an equation could be derived for determining the gas con-
centration in the near-surface zone as

laoe

W' +0.88 (0/p)** (€07} [ 1—20 (6§P/v,,) 1+ (Dp " /Hg-11q) (dg/dR) |11
Fa= oy T0.88(alp) (S (1-2 (vt /v, ) ]

L

(23)

Equations (4), (7), (8), (10), (11), and (23) help determine the gas concentration and
its distribution aleng the height of the apparatus relative to the basic structural charac-
teristics of the apparatus and the agitator, phase properties, and the gas fleow through the
bubbler. It should, however, be pointed out that, for using these equations, information is
required on the proportionality coefficient a in {10) and the concentration gradient in the
near-surface zone (dg/dh)ir., .

To test the assumptions made in designing the mathematical model and also to determine
the values a and {dq/dR)|i.., gas concentration was measured in the near-surface zone as well

as in the main body of the apparatus.

Tests were carried out in air—water system in apparatus of diameters 0.2, 0.25, and 0.5
‘m filled to a height of (0.7-3) D. The volume of the apparatus 15-100 liters. Agitation was
. by standard open turbine-type agitators with six blades {hyy = 0.2 dg), two blades {(hy = 0.1
d,). three inclined blades (a, = 30° and hpy = 0.2 d,), and rotary agitators (zyy = IB and
hpy = 0.11 d,) under developed turbulent conditions (Re > 10“). The height of the agitator
above the bot:om of the apparatus was (0.5-1}) dy and the ratio of the diameters of the appa-
ratus and agltator varied from 2 to 4.
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Fig. 5. Gas concentration distribution along the height of the apparatus (D = 0.5m, H = 0.5
m, dg = 0.15 m, n_ = 6 sec™?, £, = 8.4, and w' = 5.7 x 1073 w/sec); curve) theorerical; points}

experimental; a) r = 1, b) 0, and ¢) 0.5.

Fig. 6. Dependence of mean gas concentration on the mean energy dissipation {D = 0.25% m,
ds = 0.14 m, open turbine-type agitator, Gg = 8.3 m?/h, and w' = 0.046 m/sec): line) theo-
retical; and points) experimental [7].

Fig. 7. Comparison of calculated and experimental values of mean gas concentration: a) D =
0.25 mand d; = 0.14 m, b) 0.25 and 0.098, ¢) 0.5 and 0.15, and d) 0.2 and 0.1; a and b) data
of [7]; and ¢ and d) data of the present authors.

Measurements were made using an "Impul's 05" device whose main element is a needle-type
conductometric gauge registering and converting the changes of gas—liquid conductivity into
electrical impulses whose duration is proportional to the residence of the electrode tip in
the air bubble.

The experimental results of studying the gas concentration distribution in an apparatus
equipped with an agitator justified the assumption of the absence of gas-phase concentration
gradient in the radial direction {Fig. 1). The results of measuring the gas concentration
along the height of the apparatus show that, in the immediate proximity of the surface, the
gas concentration gradient could be regarded as constant at 0.25 with an accuracy adequate for
engineering calculations (Fig. 2). The direct determination of (dg/dR)[s~, helped determine
the exact proportionality coefficient ¢ in (10}. A comparison of the experimental values of
gas concentration in the near-surface zone measured at a distance of 2-7 mm from the surface
with the calculated values (Fig. 3) at a = 0.45 suggests that the equation for gas holdup
derived from the model under consideration agrees well with the results of measurements. The
value of ¢ is wholly reasonable as it corresponds not only with the results obtained for appa-
ratus equipped with agitators [9] and bubblers [11] but also with the results of studying a
much broader range of hydrodynamic problems [23] based on the hypothesis of the course of
mixing advanced by Prandtl.

Equations (7) and (8) together with the values of (d¢/dR)|i-: and a found help calculate
the mean value of gas concentration and its distribution along the height of the apparatus.
It should, however, be peinted out that, for calculating the gas concentration on the surface,
its distribution along the height of the apparatus and its mean value for the height of the
gas—liquid layer are not known initially. The ealculation is, therefore, made by iteration
for the value Hp..1i5- The initial value of Ho—jjq is assumed as equal to the height of the
liquid bed H be%gre feeding the gas into the apparatus and each subsequent approximation of
the height of the gas—liquid layer is determined from the equation

) Ho gl (=99 (24)
The value 9,y is calculated from Eq. (9) using the characteristics of the preceding iteration.
The 'scheme for calculations is shown in Fig. &.

. ! The gae concentration distribution along the height of the apparatus obtained by experi-
mental measurements and also the theoretical dependence of 9 on h constructed using Eqs. (4&),
(7), (8), (10), (11), and (23) are shown in Fig. 5. The dependence of mean gas concentration
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on €,3V is shown in Fig. 6. A comparisen of the experimental and calculateg vaives of mean

gas concentration in apparatus of volume 15 to 100 liters is shown in Fig. 7. It may be seen
from Figs. 6 and 7 that the theoretical dependences describe the experimental results quite wel}
and could be recommended for use in the engineering practice.

NOTATION

D) Diameter of apparatus, m; D) coefficient of eddy diffusion. m"/sec; d,) diameter of
agitator, m; CE) gas flow, m*®/h; H) liquid height in the apparatus, m; Hg-jjq) height of gas—
liquid layer in the apparatus, m; h) current coordinate of height, m; hy) height of agitatoer
above the bottom of the apparatus, m: hp)) height of blade, m; n) rps of agitator; vy) rate of
buovancy of the bubble, m/sec; v, ;) pulsating velocity of magnitude %, m/sec; w'} effective
gas velocity, mfsec; 2} number of agitators on a shaft; zp1) number of blades of agitator;
o,) angle of agitator blade inclination, deg; €,) rate of energy dissipation, W/kg; w) fluidity
of the continuous medium, Pa-sec; Ea) coefficient of resistance of agitator; p and p') den-
sities of the liquid and gaseous phases, kg/m?*; o) surface tension at the phase separation
boundary, N/m: ¢, 4 ,y. and 4g) gas concentration: current, mean. and on surface; g 5,°%P
and ©4,°31) experimental and calculated values of mean gas concentration; h = h/lg-1iq?
relative coordinate of height; and r = r/R) relative radius.
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PHENOMENOLOGICAL THEORY OF FAST MOTIONS OF A GRANULATED
MEDIUM BASED ON STATISTICAL MECHANICS METHQDS

1. V. Shirkeo and V. A. Sakharov UDC 539.215

On the basis of methods developed in the theory of Brownian motion, we have cb-
tained-a closed system of phenomenological equations describing “fast motions™

of a granulated medium. Assuming that the viscous forces are small, we have shown
that the ‘distribution function of the velocities and displacements is a normal
.distribution. Using Prandl's concept of mixing path length we obtainthe values
of the viscosity and "thermal conductivity" coefficients, which proved to be depen-
dent on the pressure and energy of random motion. The validity of the equations
obtained is tested by comparing with the experimental ones in one-dimensional
problems (Couette flow, flow in a vertical channel).

Beginning with the fundamental work of Coulomb and up to the beginning of the 1960's, the
mechanics of granulated media has been developed as the science of limiting equilibrium.
This is explained by the fact that for the planar deformed state and in the axially symmetric
case, the problems of the mechanies of soils {1], like the theory of ideal plasticity, are
statically definable. Therefore, in many cases the values of the critical loads and the
stress distribution may be obtained without considering the equations for the velocities.

Despite the great diversity of approaches to constructing the velocity fields, up to the
present time the most correct approach remains the flow theory in [2], based on application
of the agcociated law to the Coulomb yield criterion. The major advantage of this theory is
the fact that the characteristics of the stress and velocity fields in this case coincide,
and consequently the regions found in limiting equilibrium may be defined unambiguously.
~ The results of [3-5], in which the lines of discontinuity of the stresses and velocities are
studied in detail and on this basis new problems with mixed boundary conditions are formulated
and solved, have imparted a conclusive form to this division of mechanics. A systematic
exposition of these questions is found in [6), and a review of the later studies in this
direction is found in [7].

However, there are classes of flow of granulated media in which the observed velocity
fields are found to be in substantial disagreement with the results of thecries based on the
assumptions ocutlined above. These flows are characterized by relatively high values of the
velocity (on the order of meters per second) and usually arise in gravitational flows (move-
ment of grain in silo elevators, ore material in ore chutes, fuel elements and catalyst
granules in some nuclear and chemical reactor designs, ate.). It turns out that the behavior
of materials for such types of flow is very similar to the behavior of a viscous liquid under
analogous conditions. '

Theoretical work in which these phenomena are studied have been formuwlated recently inte
an independent scientific direction called "the theory of fast motions of granulated media.™

At the present time, the development of "viscous" effects for fast flows of absolutely
dry granulated media is explained by the fact that for longitudinal "macroscopic motion" of
shear flow, small displacements of the particlas develop in the transverse direction, which-
transfer and thus cause the appearance of additicnal tangential stresses. Attempts at a
gquantitative description of such phenomena have been mainiy undertaken im two directions: in
the first case, familiar concepts from the kinetic theory of dense gases are drawn upon; in

the second case, elements of the theory of turbulent motion of a liquid are used. Some papers
sy foreign authors and a review of studies in this direction are found in [8].
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