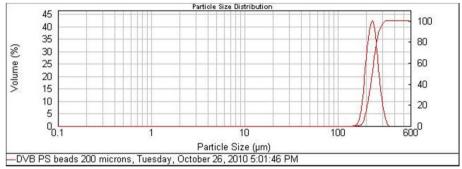


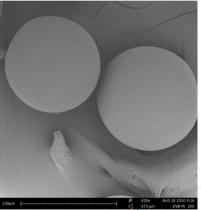
Methodological Aspects of On-Line Probes in Stirred Tanks

Evgeny Zlotnikov

Objectives and Outline

- Overall objective of the project: develop understanding of contribution of reactors hydrodynamics to data from on-line probes (FBRM, Raman, IR...)
 - Study of impact of hydrodynamics on response of FBRM measurements in stirred tank reactors
- Outline
 - Experimental:
 - Materials, Instruments, Techniques
 - Model solid particles
 - Impact of stirring speed and probe location on size distribution
 - Total number of counts
 - False bimodality
 - Approach to data analysis
 - Hydrodynamic simulation of reactor: distribution of solid particles
 - Future plans

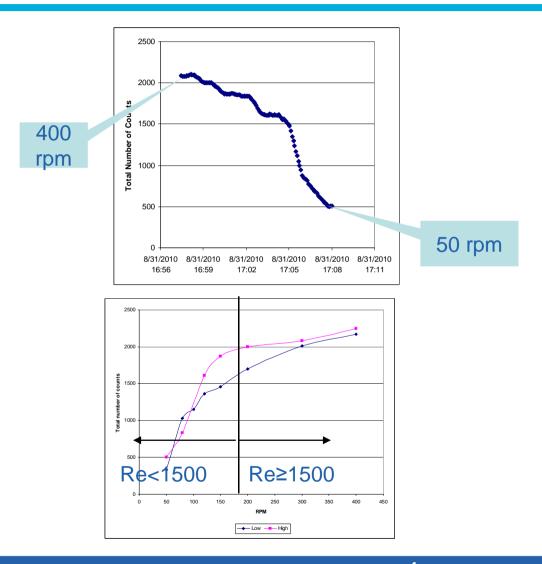


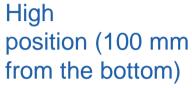

Materials, Instruments, Techniques

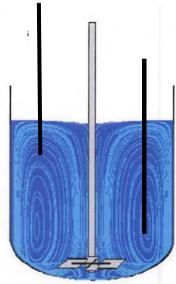
- Instruments & Techniques
 - Glass reactor
 - 3L; Ø150 mm
 - 3-blade pitched stirrer (50-600 rpm)
- Particles Characterization
 - SEM FEI Phenom
 - Mastersizer 2000 (Malvern)
 - Dry module, 3 Bars
 - FBRM D600 (Mettler Toledo)
 - Laser beam rotation at 2m/s
 - **1-1000 microns**
- Reactor simulation software
 - VisiMix®
 - Turbulent 2K package

Materials

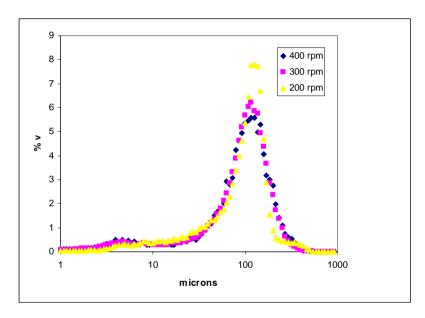
- Polymer beads (DVB/PS; PVC)
- De-mineralized water



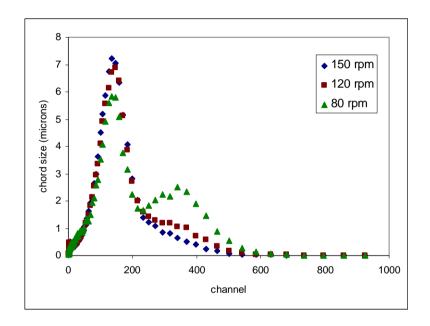




Experimental: Total number of Counts and Stirring Speed



Low position (20 mm from the bottom)


Experimental: Stirring and Chords Size Distribution

PVC 100 microns

Re>1500

Low probe position

DVB/PS 200 microns

Re <1500

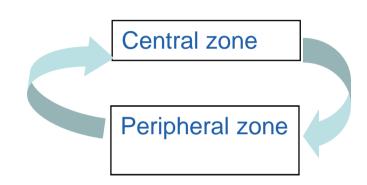
Low probe position

Summary of Experimental Observations

- FBRM readings are affected by
 - Location of the probe
 - Stirring speed
- Impact on particle (chords) size distribution
 - Total number of counts depends on position of the probe and stirring speed
 - Low stirring speed can lead to identification of false bi-modality

FBRM data reflect variation of the concentration of particles in the reactor.

What factors effect variation of size distribution over the reactor volume?


Hydrodynamic Simulation (VisiMix® Approach)

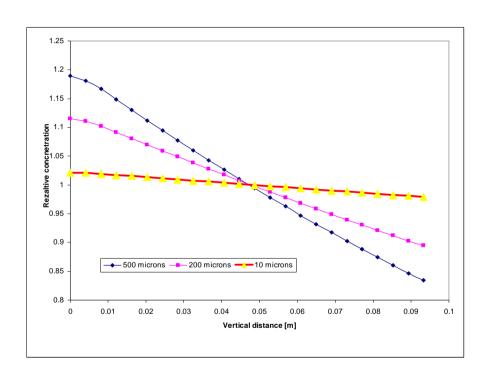
Background

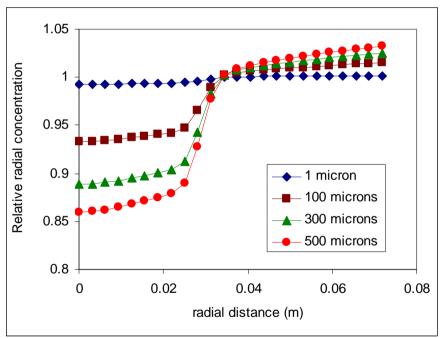
- Two-zone model of reactor
- Governing equation: moments balance (impeller/liquid/reactor walls)
- Approximation of flow rate by power series

Assumptions & Limitations

- 1500 < Re < 2,000,000 Turbulent flow
- Radial flow profile does not depend on vertical coordinate
- Cylindrical geometry of peripheral and central zones
- Solid particles flow with the same rate as liquid
- The model includes some empirical coefficients- validity of VisiMix is limited by validity of empirical interrelations

Structure of two zone model of stirred tank



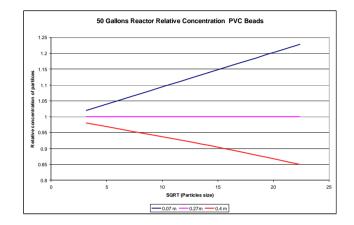


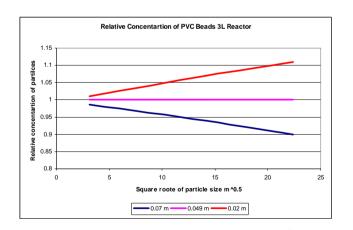
VisiMix Simulation: Stirring Speed & Particles Distribution in 3 L reactor (DVB PS particles)

Axial Distribution (500 rpm)

Radial Distribution (500 rpm)

Axial and radial distributions vary with particles size: impact on PSD is expected

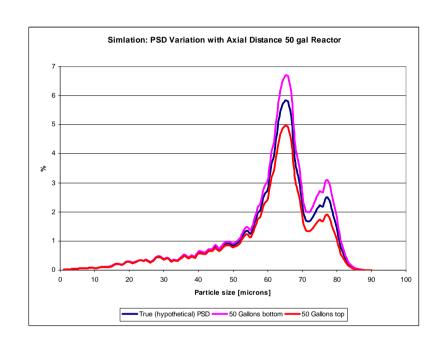


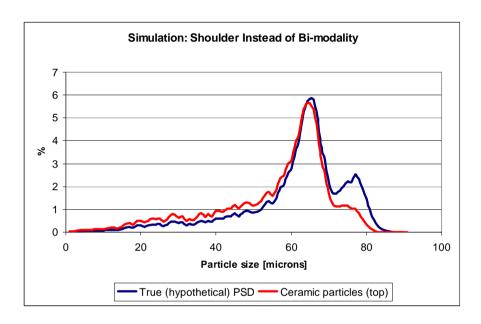


Summary of Hydrodynamic Simulation

Probe location

- ~90% of particles are located in peripheral zones of stirred tank (for heavy particles)
- Within the peripheral zone slight effect of radial position of the probe
- Impact of axial probe position increases with particles size and weight
- Assessment of hydrodynamics impact on size distributions by FBRM
 - For each size class of particles calculate local hydrodynamic factor i.e. ratio of local particles concentration to average
 - Density of phases, design of reactor, viscosity should be known





VisiMix Simulation: PSD Variation

PSD Variation: DVB/PS particles

PSD Variation: Ceramic particles

Conclusions and Further Plans

- Impact of hydrodynamics of stirred tanks on FBRM was shown experimentally
 - Stirring speed
 - Probe location
- Results of simulation show potential impact on sizing and size distribution
- Correct interpretation of on-line probes data requires
 - Measurements at rpm providing uniform distribution of particles-if possible
 - Optimal probe placing if "no-effect-on- PSD point" exists
 - Understanding of hydrodynamics
 - Application of VisiMix or other hydrodynamic simulation tools is useful
- **Further work**
 - Experimental verification for wide and bimodal PSD; concentration effects
 - Application to real products
 - Do we really have preferable (no-effect-on- PSD-point) probe location?
 - Extension of VisiMix® application to other online probes

