VisiMix DI. Modeling of Suspending in Tanks with Different Impellers on the Shaft.

LIQUID-SOLID MIXING IN REACTOR SUSP D WITH DISC TURBINE AND A310 IMPELLERS.

1. Entering the data for reactor in VisiMix DI and calculation of energy dissipation in the bulk of volume.

The data of the reactor **Susp_D** are entered in a project **Susp_D.vsd**. Type and main dimensions of the tank are presented in the Figure 1. Characteristics of mixing device and positions of impellers corresponds to Figures 2, 3 and 4. Properties of liquid media are shown in the Figure

Inside diameter	3000	mm		
Total tank height	5000	mm		
Total volume	3.534e+04			5000
Level of media	3500	mm		
Volume of media	2.474e+04	I	< Ø 3000 →	¥

Figure 1. Reactor Susp_D. Type and dimensions of tank .

Figure 2. Reactor Susp_D. Mixing device.

Figure 3. Reactor Susp_D. Impeller 1.

LIGHTN	IIN A310
Tip diameter	1400 mm 💌
Dist. from bottom	1800 mm 💌
Figure 4. Reactor Susp	_D. Impeller 2.

AVERAGE PROPERTIES OF MEDIA				
Type of media • Newtonian • Non-Newtonian Behavior of Non-Newtonian media is approximated with the functions:				
Average 1000 kg/cub.m 💌				
Dynamic viscosity 0.003 Pa*s 💌	$\tau = \tau_0 + K * \gamma^n$			
Kinematic viscosity <u>3e-06</u> sq.m/s	$\mu = \tau_{0} * \gamma^{-1} + K * \gamma^{n-1} ,$			

Figure 5. Reactor Susp_D. Properties of liquid media.

Calculation of *Energy dissipation in the bulk of volume* – see Figures 6 and 7.

Project Edit input Calculate Supplements	Last menu Last input table Window View Help
HYDRODYNAMICS	
Turbulence	CHARACTERISTICS FOR EACH IMPELLER
Single-phase liquid mixing	CHARACTERISTICS FOR ALL IMPELLERS
Heat Transfer. Continuous flow (CF)	
Heat Transfer. Batch (BH)	LOCAL VALUES OF ENERGY DISSIPATION
Heat Transfer. Semibatch (SB)	Energy dissipation - maximum value
Heat Transfer, Fixed temperature regime (FT)	Energy dissipation - average value Energy dissipation in the bulk of volume
Treat mansreit, rixed temperature regime (i r)	Energy dissipation near baffles Energy dissipation near baffles VOLUMES OF ZONES WITH DIFFERENT TURBULENCE Volume of zone with maximum dissipation RESIDENCE TIME IN ZONES WITH DIFFERENT TURBULENCE Relative residence time in zone of maximum dissipation Relative residence time in zones of baffles MICROSCALES OF TURBULENCE IN DIFFERENT ZONES TURBULENT SHEAR RATES IN DIFFERENT ZONES Maximum local turbulent shear stress

Figure 6. Reactor Susp_D. Menu Turbulence.

] [9	usp_D] - Energy dissipation in the bulk of volume		_			
	ENERGY DISSIPATION IN THE BULK OF VOLUME					
	Parameter name Units Value					
	Energy dissipation in the bulk of volume	W/kg	0.0922			

Figure 7. Reactor Susp_D. Energy dissipation in the bulk of volume.

- 2. Reproduction of the local energy dissipation in the tank using the program VisiMix Turbulent.
- 2.1 Open the project Susp_T.vsm in VisiMix Turbulent. Enter the tank corresponding to the data of Figure 1 and Average properties of media corresponding to Figure 5. Enter 2-stage Disk turbine with dimensions corresponding to the data of Figure 3. Position of the upper turbine must correspond to position of the Impeller 2 impeller A310 in Figure 4. Input table for the mixing device is shown in the Figure 8.
- 2.2 Select the **Rotational speed** of the turbines so as to provide the value of *Energy dissipation in the bulk of volume* in the limits 0.0922 ±0.01. As is shown in the Figure 9, this requirement is satisfied at 54 r.p.m.
- Note. The calculated mixing power and overload of the drive (see Figure 10) in this case is not taken into account.

Figure 8. Project Susp_T.vsm. Equivalent mixing device for bottom turbulence.

<u> </u>)[Su	isp_T] - Energy dissipation in the bulk volume		_			
	ENERGY DISSIPATION IN THE BULK VOLUME						
	Parameter name Units Value						
		Energy dissipation in the bulk volume	W/kg	0.0914			
				For HELP p	ress F1		

Figure 9. Project Susp_T.vsm. Energy dissipation corresponding to 54 r.p.m.

Figure 10. Project Susp_T.vsm. Calculated mixing power for the 'equivalent' project is not relevant.

- 2.3 Enter properties of solid and liquid phase (see Figure 11), click *Calculate>Liquid-solid mixing>Complete/incomplete suspending* and correct *Average properties of media* (Figure 12).
- 2.4 Check pick-up conditions (via *Calculate>Liquid-solid mixing>Complete/incomplete suspending*). Accordingly to the results of calculations, the pick-up conditions are satisfied see Figure 13.

E:\2006\New Folder\Sus	sp_T.vsm	×			
PROPERTIES OF SOLID AND LIQUID PHASES.					
Density of liquid phase	1000	kg/cub.m 💌			
Dyn. viscosity of cont.phase	0.003	Pa*s 💌			
Concentration of solid phase	200	kg/cub.m 💌			
Density of solid phase	2300	kg/cub.m 💌			
Average particle size	150	micron 💌			
Size of largest particles	× [250	micron 💌			
Position of outlet-height	0	mm			

Figure 11. Project Susp T.vsm. Entering properties of solid and liquid phase

AVERAGE PROPERTIES OF MEDIA				
Type of media				
🔹 Newtonian 🔷 Non-Newtonian	Behavior of Non-Newtonian media is approximated with the functions:			
Average density				
Dynamic viscosity 0.00417 Pa*s 💌	$\tau = \tau_0 + K * \gamma^n$			
Kinematic viscosity 3.733e-06 sq.m/s	$\mu = \tau_{0} * \gamma^{-1} + K * \gamma^{n-1} ,$			

Figure 12. Project Susp_T.vsm. Correction of average properties of media.

Figure 13. Project Susp_T.vsm. Checking the pick-up conditions.

- 3. Reproduction of macroscale transport rate and modeling of suspension distribution.
- 3.1 Return to the program **VisiMix DI.** Calculate *Macromixing time* in the reactor **Susp_D.vsd** see Figure 14.

9 (Su	isp_D] - Macromixing time		-							
	MACROMIXING TIME									
	Parameter name	Units	Value							
	Macromixing time	s	37.8							
			Ear HEI Barr							

Figure 14. Project Susp_D.vsd. Macromixing time in reactor.

3.2. Return to the project **Susp_T.vsm** (program **VisiMix Turbulent**). Calculate *Macromixing time*. Accordingly to the results (Figure 15), at 54 r.p.m. the calculated value is 120 sec.

MACROMIXING TIME Parameter name Units Value Macromixing time s 120	[Susp_T] - Macromixing time			_ [_]				
Parameter name Units Value Macromixing time s 120	MACROMIXING TIME							
Macromixing time s 120	Parameter name Units Value							
	Macromixing time	s	120					

Figure 15. Project Susp_T.vsm. Macromixing time for 54 r.p.m.

- 3.3.For reproduction of the macroscale mixing rate of the tank Susp_D_vsd (see Figure 14), the *Macromixing time* for the project Susp_T.vsm must be within the limits $35.9 \div 39.7$ sec. The corresponding rotation speed of turbines is about 54 r.p.m.* 120 / 37.8 = 171.4 r.p.m.
- 3.4 Change **Rotational speed** to 171 r.p.m. (Figure 16) and define *Macromixing time* (via *Calculate>Single-phase liquid mixing*). Accordingly to the Figure 17, the calculated value is within the required limits.

Figure 16. Project Susp_T.vsm. Correction of Rotational speed.

] [s	usp_T] - Macromixing time		_				
	MACROMIXING TIME						
	Parameter name Units Value						
	Macromixing time	s	37.9				

Figure 17. Project Susp_T.vsm. Macromixing time for 171 r.p.m.

- Notes. 1. The calculated mixing power and overload of the drive (see Figure 10) in this case is not relevant.
 - 2. Difference of density and viscosity of suspension (see Figure 12) and of liquid phase (Figure 5) is not important for this example.
- 3.5 Modeling of distribution of suspension.

Calculate parameters of suspension distribution via Calculate>Liquid/solid mixing. For example, select Liquid/solid mixing. MAIN CHARACTERISTICS – Figure 18.

)[Su	sp_T] - LIQUID-SOLID MIXING. MAIN CHARACTERIST	ICS				
	LIQUID-SOLID MIXING. MAIN CHARACTERISTICS					
	Parameter name Units Value					
	Maximum degree of non-uniformity - axial, %		41.9			
	Maximum degree of non-uniformity - radial, %		3.15			
	Average concentration of solid phase in continuous flow	kg/cub.m	141	•		
			For HELL	D pross E1		

Figure 18. Calculated parameters of suspension distribution.