VisiMix DI.

Mixing of non-Newtonian Liquids in Tanks with Different Impellers on the Shaft.

Mechanical Calculations of a Shaft with End Bearing.

1. Equipment description and initial data:

Tank application: preparation of a washing&cleaning liquid with micro-disperse solid abrasive.

Tank type: a fully baffled tank with flat bottom and 4 baffles.

Mixing device: 3-stage device that includes a disc turbine and two pitch paddle impellers.

Design and main dimensions are shown below in Figures 1 and 2.

Media: suspension with non-Newtonian properties. Density and rheological constants of the media are presented in the Figure 3.

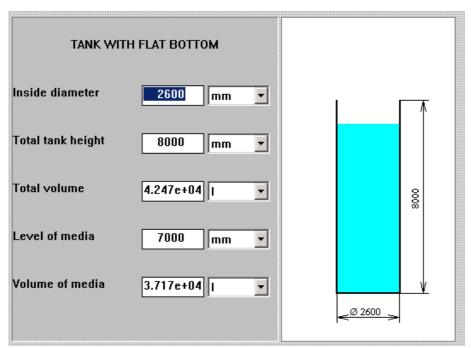


Figure 1.

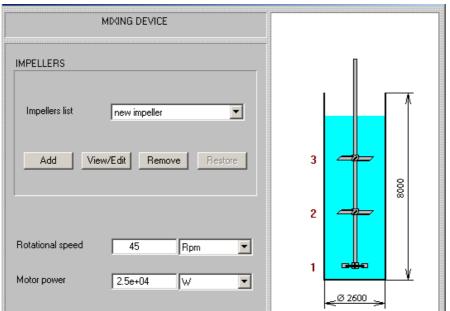


Figure 2.

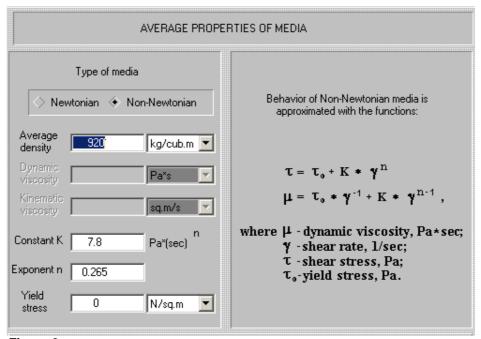


Figure 3.

2. Calculation of mixing parameters.

2.1. Hydrodynamics. Calculated power value is presented in the Figure 4.

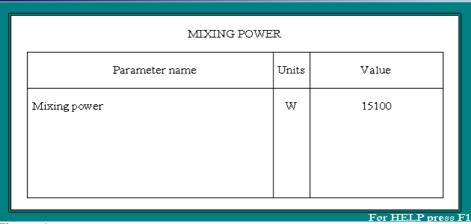


Figure 4.

2.2. Local Shear rates and Effective viscosity of media. Calculation is performed via Calculate>Turbulence>Characteristics for all impellers. Results of calculations are shown in the Figures 5-7.

LOCAL VALUES OF ENERGY	Z DISSI	PATION
Parameter name	Units	Value
Energy dissipation near impeller - max. value	W/kg	45.1
Energy dissipation - average value	W/kg	0.344
Energy dissipation in the bulk of volume	W/kg	0.141
Energy dissipation near baffles	W/kg	0.141

Figure 5.

MAXIMUM ENERGY DISSIPATION NEA	AXIMUM ENERGY DISSIPATION NEAR THE IMPELLER BLADES				
Parameter name	Units	Value			
Impeller 1	W/kg	45.1			
Impeller 2	W/kg	17.3			
Impeller 3	W/kg	17.3			
		For HELP nres			

Figure 6.

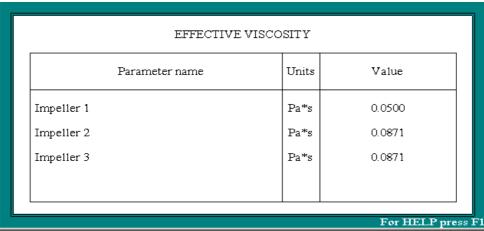


Figure 7.

	LOCAL VALUES OF EFFECT	IVE VIS	SCOSITY
	Parameter name	Units	Value
	Effective viscosity in the bulk of volume	Pa*s	1.43
	Effective viscosity in zone near baffles	Pa*s	1.43
	Effective viscosity in zone of impeller with maximum dissipation	Pa*s	0.0500
L			For HELP press l

Figure 8.

2.3. Mechanical calculation of a console shaft. Initial data for calculation of console shaft are presented below in Figures 9 and 10.

Results of calculation are shown in the Figures 11 and 12.

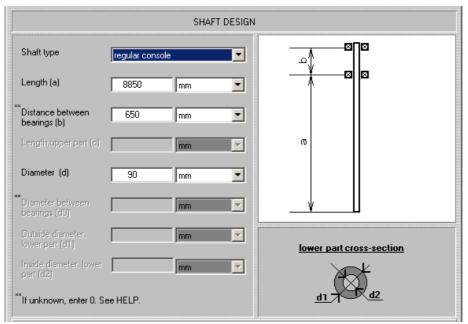


Figure 9.

MIXING DEVICE D	ATA FOR ME	CHANICAL CALCULATI	ONS	
	Mass			
Impeller 1	105	kg ▼		
Impeller 2	160	kg ▼		
Impeller 3	160	kg 🔻		
Impeller 4		kg 🔻		
Impeller 5		kg		
** Distance from bearing	8250	mm 💌		
** For console shaft - I bearing.	from lower be	aring, for beam shaft - fro	m upper	

Figure 10.

	TORSION SHEA	AR.	
	Parameter name	Units	Value
	Allowable shear stress	N/sq.m	1.5e+08
	Max. shear stress in upper section of the shaft	N/sq.m	9.27e+07
	Max. shear stress in lower section of the shaft	N/sq.m	9.27e+07
	Max. shear stress in the shaft section between bearings	N/sq.m	9.27e+07
_			For HELP press F

Figure 11.

	SHAFT VIBRATION CH	ARACTERIS	TICS	٦
	Parameter name	Units	Value	
	Critical frequency	1/s	0.523	
	Rotational frequency	Rps	0.750	
	Rotational to critical frequency ratio		1.43	
L			For HELP pre	

Figure 12.

2.4. Mechanical calculation of beam shaft. Initial data for calculation of a combined shaft with bottom bearing are presented below in Figure 13. Results of calculation are shown in the Figures 14 and 15.

		SHAFT DESI	GN	
Shaft type	combined beam	<u> </u>		<u>, </u>
Length (a)	8850	mm _		o l
Distance between bearings (b)		mm	, w	
Length,upper part (c)	5850	mm <u> </u>	I	<u> </u>
Diameter (d)	90	mm <u> </u>		
Diameter between bearings (d0)		mm		<u>/</u> ⊗∐⊗
Outside diameter, lower part (d1)	116	mm <u> </u>	lov	ver part cross-section
Inside diameter, lower part (d2)	98	mm <u> </u>		
** If unknown, enter 0. Se	e HELP.			<u>d1</u> <u>d2</u>

Figure 13.

TORSION SHEA	AR.	
Parameter name	Units	Value
Allowable shear stress Max. shear stress in upper section of the shaft	N/sq.m N/sq.m	1.5e+08 9.27e+07
Max. shear stress in lower section of the shaft	N/sq.m	8.83e+07
		For HEI P proce

Figure 14.

SHAFT VIBRATION CH	ARACTERIS	TICS	
Parameter name	Units	Value	
Critical frequency	1/s	1.59	
Rotational frequency	Rps	0.750	
Rotational to critical frequency ratio		0.471	
		For HELP pre	J

Figure 15.